Building a High-Performance RAG Solution with Pgvectorscale and Python

1. RAG (Retrieval-Augmented Generation)

RAG enhances the response generation process by retrieving relevant documents from an external knowledge base (e.g., a vector database) and using these documents to inform the generated responses. It combines:

2. Pgvectorscale

Pgvectorscale is an extension for PostgreSQL that enables high-performance vector similarity searches using embeddings. It builds on pgvector, allowing storage and indexing of high-dimensional vectors, making it suitable for large-scale RAG systems.

3. Setting Up the Components

To build the RAG solution, you'll need:

4. Build a High-Performance RAG Solution

Step 1: Install PostgreSQL, pgvector, and Pgvectorscale

Install the necessary components:


    CREATE EXTENSION vector;
    CREATE EXTENSION pgvectorscale;
  

Step 2: Generate Embeddings

Use a model to create embeddings for your documents:


    from sentence_transformers import SentenceTransformer
    model = SentenceTransformer('all-MiniLM-L6-v2')
    
    documents = ["Your document text here", "Another document text"]
    embeddings = model.encode(documents)
  

Step 3: Store Embeddings in PostgreSQL

Create a table to store the embeddings:


    CREATE TABLE documents (
        id SERIAL PRIMARY KEY,
        text TEXT,
        embedding VECTOR(768)
    );
  

Insert documents and embeddings:


    import psycopg2
    conn = psycopg2.connect("dbname=test user=postgres")
    cur = conn.cursor()

    cur.execute("INSERT INTO documents (text, embedding) VALUES (%s, %s)",
                (document_text, embedding.tolist()))
    conn.commit()
  

Step 4: Retrieve Relevant Documents

Query the vector database for the most relevant documents:


    SELECT * FROM documents
    ORDER BY embedding <=> query_embedding
    LIMIT 5;
  

Step 5: Generate Responses Using the Retrieved Documents

Use a generation model like GPT to create a response:


    from transformers import GPT2LMHeadModel, GPT2Tokenizer

    model = GPT2LMHeadModel.from_pretrained('gpt2')
    tokenizer = GPT2Tokenizer.from_pretrained('gpt2')

    prompt = f"Based on the following documents:\n{retrieved_documents}\nAnswer the question: {user_query}"

    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(inputs['input_ids'], max_length=500)
    response = tokenizer.decode(outputs[0])
    print(response)
  

5. Optimization for High Performance

To ensure high performance, use indexing and parallel queries in PostgreSQL. For large-scale datasets, distribute the retrieval tasks across multiple nodes.

6. Use Cases

References: