RAG enhances the response generation process by retrieving relevant documents from an external knowledge base (e.g., a vector database) and using these documents to inform the generated responses. It combines:
Pgvectorscale is an extension for PostgreSQL that enables high-performance vector similarity searches using embeddings. It builds on pgvector, allowing storage and indexing of high-dimensional vectors, making it suitable for large-scale RAG systems.
To build the RAG solution, you'll need:
Install the necessary components:
CREATE EXTENSION vector;
CREATE EXTENSION pgvectorscale;
Use a model to create embeddings for your documents:
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('all-MiniLM-L6-v2')
documents = ["Your document text here", "Another document text"]
embeddings = model.encode(documents)
Create a table to store the embeddings:
CREATE TABLE documents (
id SERIAL PRIMARY KEY,
text TEXT,
embedding VECTOR(768)
);
Insert documents and embeddings:
import psycopg2
conn = psycopg2.connect("dbname=test user=postgres")
cur = conn.cursor()
cur.execute("INSERT INTO documents (text, embedding) VALUES (%s, %s)",
(document_text, embedding.tolist()))
conn.commit()
Query the vector database for the most relevant documents:
SELECT * FROM documents
ORDER BY embedding <=> query_embedding
LIMIT 5;
Use a generation model like GPT to create a response:
from transformers import GPT2LMHeadModel, GPT2Tokenizer
model = GPT2LMHeadModel.from_pretrained('gpt2')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
prompt = f"Based on the following documents:\n{retrieved_documents}\nAnswer the question: {user_query}"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(inputs['input_ids'], max_length=500)
response = tokenizer.decode(outputs[0])
print(response)
To ensure high performance, use indexing and parallel queries in PostgreSQL. For large-scale datasets, distribute the retrieval tasks across multiple nodes.